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Outline 

§ Gluon OAM and Wigner distribution 

§ Experimental observable 

2 



Outline 

§ Gluon OAM and Wigner distribution 

§ Experimental observable 

3 



Nucleon spin structure: A strong 
motivation for RHIC and EIC 
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RHIC has made the 
most precise 
measurement of the 
gluon polarization so far. 



Nucleon spin structure: A strong 
motivation for RHIC and EIC 
Electron-Ion Collider: 
 
§ Highly Polarized Beams 
§  Large Kinematic Range 
§ High Collision Luminosity 
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EIC will be capable of 
measuring the nucleon 
spin structure to a more 
precise level! 



The longitudinal nucleon spin 
structure 

ΔΣ(Q2=10 GeV2) = 0.366, 
de Florian et al., 2009

ΔG(Q2=10 GeV2) = 0.2~0.3, 
de Florian et al., 2014; 
E. Nocera et al., 2014;
Lattice QCD: Yang, Suffian, Y.Z., et 
al., 2016

SLAC 
HERMES (DESY) 
COMPASS (CERN) 
JLab 
RHIC 

Naïve spin sum rule: 1
2
=
1
2
ΔΣ+ΔG + l zq + l

z
g

Quark	spin	

Gluon	
polarization	

Quark	and	
gluon	orbital	

angular	
momentum	
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Orbital angular momentum 

§ OAM in Ji sum rule (Ji, 1997): 
§ Measureable through twist-2 GPD in  
deeply virtual Compton scattering (DVCS); 
§  Parton density interpretation not clear. 

§ OAM in Jaffe-Manohar sum rule (Jaffe and Manohar, 1989): 
§ Clear partonic interpretation; 
§ Related to a TMD (pretzelosity) in models  
(She, Zhu, and Ma, 2009; H. Avakian et al., 2009, 2010),  
accessible through SIDIS (Lefky and Prokudin, 2015; COMPASS, 
2017); 
§ Model-independent observable not known until recently. 
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1
2
ΔΣ+ΔG + l zq + l

z
g

		
1
2 = Jq + Jg , 				(Lg = Jg − ΔG)



The gluon orbital angular momentum 
(OAM) and Wigner distribution 

§ Moment of a phase space Wigner distribution 

 
§ Wigner distribution or generalized transeverse 

momentum distribution (GTMD) 
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		Lg(x)= db2⊥d
2k⊥∫ (b⊥ ×k⊥ )W g

LC(x ,0,k⊥ ,b⊥ )

		

W g
LC(x ,ξ ,k⊥ ,b⊥ )= d2Δ⊥e

− ib⊥⋅Δ⊥ f (x ,ξ ,k⊥ ,Δ⊥ )∫
Lg(x)= ε⊥

αβ ∂
∂iΔ⊥

α
Δ=0

d2k⊥k⊥
β fg(x ,ξ ,k⊥ ,Δ⊥ )∫

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.

y
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x
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position b

T

in the proton.

Both impact parameter distributions
f(x, b

T

) and transverse-momentum distri-
butions f(x,k

T

) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, b
T

)
and f(x,k

T

) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, b

T

) and f(x,k
T

)
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, b

T

,k
T

) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and k

T

or b

T

. Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-

17

Belitsky, Ji, and Yuan, 2004; 
Meissner, Metz and Schlegel, 
2009;
Lorce and Pasquini, 2011; 
Lorce et al., 2012; 
Y. Hatta, 2012; 
Ji, Xiong, and Yuan, 2012. 

kT
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The gluon orbital angular momentum 
(OAM) and Wigner distribution 

fg(x,ξ,k⊥,Δ⊥ ) = Fg(x,ξ, k⊥ , Δ⊥ )+ i
!
k⊥ ×
!
Δ⊥

2M 2 S+Fg
(l ) (x,ξ, k⊥ , Δ⊥ )+"

		

Lg(x ,ξ , Δ⊥ )= − d2k⊥∫
k2⊥
2M2 Fg

(l )(x ,ξ , k⊥ , Δ⊥ )

Lg(x)= Lg(x ,0,0)

§ Parametrization of GTMD 

§ Gluon OAM density as the moment of GTMD 

Fg
1,4



Outline 

§ Gluon OAM and Wigner distribution 

§ Experimental observable 
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Experimental Process 
fg(x,ξ,k⊥,Δ⊥ )

Momentum transfer of the proton, exclusive process 

Intrinsic transverse momentum kT ? 

Consider γ* p scattering: 
2->2 process, final state momenta not independent;  
2->3 process, one more independent momentum. 

Two independent momenta 

I. INTRODUCTION

In the past three decades, we have witnessed significant advances in the understanding
of high-energy hadron structure. Great progress has been made in measuring the partonic
content of proton spin, as results from SLAC, CERN, DESY, JLab and RHIC have nailed
the quark spin contribution to about 30% [1–3]. More recently, RHIC experiments have
revealed that the gluon polarization contributes about 40% within the kinematic range of
0.05  x  0.2 [4], which is an important part of the proton spin sum rule [5]. With the
completion of JLab 12 GeV upgrade and implementation of the Electron Ion Collider (EIC),
the proton spin structure will be studied to an unprecedented extent with higher precision.
Among them, the major focus will be the gluon helicity distribution at smaller x, and in
particular, the orbital angular momenta (OAM) from the quarks and gluons [6, 7]. The
latter play important roles in the partonic structure in nucleon, not only for the proton spin
sum rule, but also for the novel phenomena in various high energy scattering processes. It
has been shown in [8] that the total angular momentum contributions from the quarks and
gluons can be studied through the associated generalized parton distributions (GPDs) [9–11]
measured in the hard exclusive processes, such as the Deeply Virtual Compton Scattering
(DVCS) [8, 10]. By subtracting the helicity contributions, we will be able to obtain the
corresponding OAM contributions from the quarks and gluons.

Recent developments have also unveiled the close connection between the parton OAM
and the associated quantum phase space distributions, the so-called Wigner distribution
functions [12–16],

Lq,g(x) = ✏↵�?
@

i@�↵
?

����
�=0

Z
d2k? k�

?fq,g(x, ⇠, k?,�?) , (1)

where fq,g represent the quark/gluon Wigner distributions in a longitudinal polarized nu-
cleon, and ✏↵�? represents 2-dimensional Levi-Civita symbol. We focus on the gluon Wigner
distribution with light-cone gauge links and the corresponding OAM belongs to the Ja↵e-
Manohar spin sum rule [17, 18]. The Wigner distributions are also referred to as the gener-
alized transverse momentum dependent parton distributions [19]. This opens a new window
to directly access the parton OAM contributions to the proton spin. The goal of this paper
is to show that indeed that we can probe the gluon OAM distribution through the hard
scattering processes in high energy lepton-nucleon collisions, in particular, at the EIC.

We take the example of the single longitudinal target-spin asymmetries in hard exclusive
dijet production in lepton-nucleon collisions [20],

`+ p ! `0 + q1 + q2 + p0 , (2)

where the incoming and outgoing leptons have momenta l and l0, proton momenta with p
and p0, and the final state two jets with momenta q1 and q2, as illustrated in Fig. 1. In high
energy experiments at the EIC, the process of (2) is dominated by the gluon distribution
from the target nucleon, and in particular, the di↵erential cross section will depend on the
gluon Wigner distribution [21]. Because of the relation of Eq. (1), one expects that the single
longitudinal target-spin asymmetry of this process will be an ideal probe to the gluon OAM.
To show this explicitly, we perform our calculations in a general collinear factorization
framework, where the gluon OAM distribution enters at the twist-three level. The spin
dependent di↵erential cross section has a characteristic azimuthal angular dependence of

2

Answer: Exclusive dijet production in l+p scattering ✔ 
Braun and Ivanov, 2005

Hatta, Xiao and Yuan, 2016



Kinematics 
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FIG. 1. Hard exclusive dijet production in deep inelastic scattering to probe the gluon orbital
angular momentum.

sin(�� � �q) where �� and �q are the azimuthal angles of the proton momentum transfer
and the relative transverse momentum between the quark pair as shown in Fig. 1. With a
hermetic detector designed for the EIC, this observable can be well studied in the future,
and will help us to finalize the proton spin sum rule, the ultimate goal for hadron physics
in past decades.

There has been an argument of strong constraint on the gluon OAM due to the smallness
of the Sivers single transverse spin asymmetries in semi-inclusive DIS from COMPASS ex-
periments [22]. However, we would like to emphasize that the Sivers e↵ect does not provide
a direct access to the gluon OAM. The goal of this paper is to propose a direct measurement.
Our approach and observables are also di↵erent from other proposals to measure the parton
OAMs [23, 24]. In particular, we focus on the hard scattering processes which can be well
studied at the planed EIC. The rest of this paper is organized as follows. In Sec. II, we
derive the single longitudinal target-spin asymmetry in hard exclusive dijet production in
lepton-nucleon collisions. We take the leading contribution from the gluon OAM distribu-
tion in the nucleon. We summarize our results and comment on further developments in
Sec. III.

II. GLUON OAM CONTRIBUTION TO THE SINGLE SPIN ASYMMETRIES

The di↵erential cross section of process (2) can be calculated through the lepton tensor
and hadronic tensor,

|M|2 = Lµ⌫H
µ⌫ , (3)

where the lepton tensor takes a simple form of Lµ⌫ = 2(lµl0⌫ + l⌫l
0
µ � gµ⌫l · l0) due to the fact

that the incoming lepton is unpolarized. The main task of our calculation is to evaluate the
hadronic tensor, which comes from the Feynman diagrams illustrated in Fig. 2. We adopt
the usual kinematics: the incoming photon with momentum q = l � l0, q2 = �Q2, xBj =

3

2

z

?

q1

q2

P

P 0 = P +�

q

FIG. 1: Kinetic diagram of the exclusive electroproduction of charm pair.

with large Q. By working out di↵erential the cross section within the collinear factorization approach, we find that the
gluon OAM density contributes to the sin(�� � �

q

) modulation in the longitudinal single target-spin asymmetry at
twist-3 level, with �� and �

q

being the azimuthal angles of the proton momentum transfer and the relative transverse
momentum between the charm pair. This observable can be well studied at facilities like Je↵erson Lab and EIC, and
will complete our understanding of the proton spin structure.

II. KINEMATICS

We are looking at the process of exclusive electroproduction of charm pairs,

�⇤(q) + p ! c(q1) + c̄(q2) + p0 , (4)

where q1 and q2 are the momenta of the charm and anti-charm quarks.
A detailed leading-order QCD calculation of the di↵erential cross section for di↵ractive dijet production has already

been done at twist-2 level in Ref. [16]. Here, we apply the same kinematics and extend the analysis to twist-3 level.
The kinematic variables are:

q = l � l0 , q2 = �Q2 , x
Bj

=
Q2

2q · p , y =
q · p
l · p , (5)

where l and l0 are the momenta of the incoming and outgoing electron. In addition,

� = p0 � p , P =
p+ p0

2
, t = �2 , (q + p)2 = W 2 , (q ��)2 = (q1 + q2)

2 = M2 . (6)

The kinematic diagram of the process is shown in Fig. 1. q and p are chosen to be along the z axis in the deep
inelastic scattering (DIS) frame. Since ~l � ~l0 = ~q, l, l0, q must be in the same plane. Without loss of generality, we
can choose them to be in the x � z plane. The charm pair are in one plane with relative transverse momentum ~q?,
whereas the proton is in an independent plane with momentum transfer ~�?.

Now let us introduce two light-cone vectors,

n2
+ = n2

� = 0 , n+n� = 1 , (7)

so that any four-vector aµ can be decomposedas

aµ = a+nµ

+ + a�nµ

� + aµ? . (8)

The skewedness parameter is

⇠ =
p+ � p0+

p+ + p0+
. (9)

2
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q
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3

In the DIS frame, we have the decompositions

pµ = (1 + ⇠)Wnµ

+ ,

p0µ = (1� ⇠)Wnµ

+ +
~�2

?
2(1� ⇠)W

nµ

� +�µ

? ⇡ (1� ⇠)Wnµ

+ +�µ

? ,

qµ = �W (1 + ⇠)x
Bj

nµ

+ +
Q2 +W 2

2W (1 + ⇠)
nµ

� . (10)

The quark momenta can be consistently decomposed up to O(1/Q) as

qµ1 = z
Q2 +W 2

2W (1 + ⇠)

 
1� z̄

~q? · ~�?
~q2? +m2

!
nµ

� +
1

z

W (1 + ⇠)

Q2 +W 2
(~q2? +m2 � z~q? · ~�?)n

µ

+ + qµ? � �µ

?
2

,

qµ2 = z̄
Q2 +W 2

2W (1 + ⇠)

 
1 + z

~q? · ~�?
~q2? +m2

!
nµ

� +
1

z̄

W (1 + ⇠)

Q2 +W 2
(~q2? +m2 + z̄~q? · ~�?)n

µ

+ � qµ? � �µ

?
2

.

(11)

where m is the quark mass, z and z̄ = 1 � z are dimensionless numbers. In the above expansion, we have required
that Q2 ⇠ W 2 ⇠ ~q2? � �2

?.
Furthermore, we introduce two parameters

µ2 = m2 + zz̄Q2 , � =
µ2

~q2? + µ2
. (12)

From momentum conservation q1 + q2 = q ��, we have

1 + ⇠

Q2 +W 2
=

2⇠zz̄

~q2? + µ2
. (13)

The scattering amplitude with the leptonic part calculated in the Feynman gauge is

M =
e
em

Q2
ū(l0)�µu(l)g

µ⌫

M⌫

�

⇤ . (14)

Gauge invariance allows us to replace the metric tensor gµ⌫ with

eµ⇤
L

e⌫
L

�
X

�=±
eµ⇤
�

e⌫
�

, (15)

where the longitudinal polarization vector is

eµ
L

= �q+

Q
nµ

+ +
q�
Q

nµ

� =
Q2 +W 2

2WQ(1 + ⇠)
nµ

� +
W

Q
(1 + ⇠)x

Bj

nµ

+ , (16)

and the transverse polarization vectors are

eµ
x

= (0+, 0�, x̂) , eµ
y

= (0+, 0�, ŷ) . (17)

Therefore, the scattering amplitude can be rewritten as

M =
e
em

Q2

X
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ū(l0)/✏
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⇤ =
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ū(l0)/✏

�

(q)u(l)A
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, (18)

where A
�

= ✏
�,⌫

M⌫

�

⇤ .
The di↵erential cross section is

d� = (2⇡)4�(4)(l + p� l0 � q1 � q2 � p0)
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(2⇡)32l00
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(2⇡)32q01
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. (19)

For unpolarized beam, after averaging over the initial spin configuration and summation over the spin of final state
quarks, we have
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µ 2 = zzQ2,      β = µ 2

!q2
⊥ +µ

2

2

z

?
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q2

P

P 0 = P +�

q

FIG. 1: Kinetic diagram of the exclusive electroproduction of charm pair.

with large Q. By working out di↵erential the cross section within the collinear factorization approach, we find that the
gluon OAM density contributes to the sin(�� � �

q

) modulation in the longitudinal single target-spin asymmetry at
twist-3 level, with �� and �

q

being the azimuthal angles of the proton momentum transfer and the relative transverse
momentum between the charm pair. This observable can be well studied at facilities like Je↵erson Lab and EIC, and
will complete our understanding of the proton spin structure.

II. KINEMATICS

We are looking at the process of exclusive electroproduction of charm pairs,

�⇤(q) + p ! c(q1) + c̄(q2) + p0 , (4)

where q1 and q2 are the momenta of the charm and anti-charm quarks.
A detailed leading-order QCD calculation of the di↵erential cross section for di↵ractive dijet production has already

been done at twist-2 level in Ref. [16]. Here, we apply the same kinematics and extend the analysis to twist-3 level.
The kinematic variables are:

q = l � l0 , q2 = �Q2 , x
Bj

=
Q2

2q · p , y =
q · p
l · p , (5)

where l and l0 are the momenta of the incoming and outgoing electron. In addition,

� = p0 � p , P =
p+ p0

2
, t = �2 , (q + p)2 = W 2 , (q ��)2 = (q1 + q2)

2 = M2 . (6)

The kinematic diagram of the process is shown in Fig. 1. q and p are chosen to be along the z axis in the deep
inelastic scattering (DIS) frame. Since ~l � ~l0 = ~q, l, l0, q must be in the same plane. Without loss of generality, we
can choose them to be in the x � z plane. The charm pair are in one plane with relative transverse momentum ~q?,
whereas the proton is in an independent plane with momentum transfer ~�?.

Now let us introduce two light-cone vectors,

n2
+ = n2

� = 0 , n+n� = 1 , (7)

so that any four-vector aµ can be decomposedas

aµ = a+nµ

+ + a�nµ

� + aµ? . (8)

The skewedness parameter is

⇠ =
p+ � p0+

p+ + p0+
. (9)
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In the DIS frame, we have the decompositions
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?
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.

(11)

where m is the quark mass, z and z̄ = 1 � z are dimensionless numbers. In the above expansion, we have required
that Q2 ⇠ W 2 ⇠ ~q2? � �2

?.
Furthermore, we introduce two parameters
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. (12)

From momentum conservation q1 + q2 = q ��, we have
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The scattering amplitude with the leptonic part calculated in the Feynman gauge is
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ū(l0)/✏

�
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where A
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The di↵erential cross section is
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|M|2
4(l · p)
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(2⇡)32l00

d3q1
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For unpolarized beam, after averaging over the initial spin configuration and summation over the spin of final state
quarks, we have

(2⇡)
d�
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l

0
=

↵
em
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1

8(2⇡)7
dzdq2?d�
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Scattering amplitude: 

Leptonic part, averaging 
initial spins and summing 
over final spins 

Hadronic part, summing 
over final state quark 
spins and color 

Because �? ⌧ q?, we have also taken �? = 0 in the hard partonic part. This will enter
into the spin-average cross section contribution, e.g., Eq. (9) below.

On the other hand, the single longitudinal target-spin asymmetry comes from the next-
to-leading power expansion of Eq. (5). Because of the nontrivial correlation between k? and
�? in the gluon Wigner distribution due to the gluon orbital motion, this contribution will
lead to a novel correlation between q? and �? as mentioned in Introduction,

Z
d2k?(~q? · ~k?)xf g(x, ⇠, k?,�?) = �iS+(~q? ⇥ ~�?)xLg(x, ⇠,�?) + · · · , (8)

where we have only kept the spin-dependent matrix element in the above equation and S+

represents the longitudinal spin, and we have taken the leading contribution in terms of
(~q? · ~k?) in H. We refer the above Lg(x, ⇠,�?) as the gluon OAM distribution, from which
we shall be able to obtain the gluon OAM contribution to the proton spin from Eq. (1).
According to this result, we only need to measure how the single target-spin asymmetry
modulates with sin(�q � ��)— which comes from (~q? ⇥ ~�?)—to extract the gluon OAM
density.

The detailed derivations will be presented in a separate publication. Here, we present
the main results and demonstrate the sensitivity of the spin asymmetries on the gluon OAM
distribution. For the spin-average cross section, we have the following expression [20],

d�

dydQ2d⌦
= �0


(1� y)|AL|2 + 1 + (1� y)2

2
|AT |2

�
, (9)

where d⌦ represents the final hadronic states phase space: d⌦ = dzdq2?d�
2
?d�q�. �0 is

defined as

�0 =
↵2
em↵

2
se

2
q

16⇡2Q2yNc

4⇠2zz̄

(1� ⇠2)(~q2? + µ2)3
, (10)

where µ2 = zz̄Q2, and we have only kept the azimuthal angular symmetric terms in the above
result and �q� = �q � ��. The contributions from the transverse and longitudinal photons

are: |AL|2 = 4�
��Fg + 4⇠2�̄F 0

g

��2, |AT |2 = �̄ (1/(zz̄)� 2)
��Fg + 2⇠2(1� 2�)F 0

g

��2, where � =
µ2/(µ2 + ~q2?). We have defined the following generalized Compton form factors,

Fg(⇠, t) =

Z
dx
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(x+ ⇠ � i")(x� ⇠ + i")
Fg(x, ⇠, t) ,

F 0
g(⇠, t) =

Z
dx

1

(x+ ⇠ � i")2(x� ⇠ + i")2
Fg(x, ⇠, t) . (11)

Following the above procedure, we derive the longitudinal target-spin dependent di↵erential
cross section,

d��

dydQ2d⌦
= �0�p

2(z̄ � z)(~q? ⇥ ~�?)

~q2? + µ2


(1� y)AfL +

1 + (1� y)2

2
AfT

�
, (12)

where �� = (�(S+) � �(�S+))/2 and �p represents the longitudinal polarization for the
incoming nucleon. The spin-dependence comes from the interferences between the leading-
twist and and twist-three amplitudes,

AfL = 16� Im
�⇥F⇤

g + 4⇠2�̄F 0⇤
g

⇤ ⇥Lg + 8⇠2�̄L0
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FIG. 2: Leading order Feynman diagrams of the exclusive electroproduction of charm pair. The other three
diagrams with the quark lines exchanged are implied.

III. DIFFERENTIAL CROSS SECTION

The leading order Feynman diagrams contributing to the electro-production of charm pairs is shown in Fig. 2.
In the light-cone gauge A+0, the scattering amplitude for the two-gluon exchange processes is

iA
�

=

Z
d4k

(2⇡)4
Hab
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1
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1
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(�⇠

2
)F+⌫

b

(
⇠

2
)|PSi , (21)

where Hab

µ⌫

(k) is the hard part. In collinear approximation, the k� and k? components are of order Q�2 and Q�1.
Since we expand to twist-3, we have
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µ⌫
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µ⌫

(k+ = xP+, k?) . (22)

For the diagrams in Fig. 2,
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The nonperturbative part:
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For µ = i, ⌫ = j, i, j = 1, 2, there are four independent distributions with respect to indices i, j,

�ij(x, ⇠, k?,�?) =
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, (25)

•  Leading order diagrams (6 in total) •  Collinear Factorization 
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FIG. 2. Generic Feynman diagram to evaluate the single longitudinal spin asymmetry in the hard
exclusive dijet production in deep inelastic lepton nucleon scattering processes. All possible gluon
attachment has been included in our calculations.

Q2/(2q · p), y = q · p/(l · p). The quark and antiquark momenta are further parameterized
by their longitudinal momentum fractions z and z̄ = 1�z as well as their transverse momenta
q? ��?/2 and �q? ��?/2. In addition, for the exclusive processes, we have the following
kinematics: � = p0 � p, P = (p+ p0)/2, t = �2, (q+ p)2 = W 2, (q��)2 = (q1 + q2)2 = M2,
and the skewness parameter is defined as ⇠ = (p+ � p0+)/(p+ + p0+) with p± = (p0±pz)/

p
2,

where q and p are chosen to be along the z axis. As shown in Fig. 1, the lepton plane is set
as the x� z plane. The quark pair are in one plane with azimuthal angle �q respect to the
lepton plane, whereas the recoiled proton is in another plane with momentum transfer ~�?
and azimuthal angle ��. The spin-average cross section for this process has been calculated
in Ref. [20]. In the following, we will compute the single longitudinal target-spin asymmetry.
We will show how this asymmetry can be related to the gluon OAM contributions.

Generically, the single longitudinal spin asymmetry in the above process can be evaluated
following the usual collinear expansion at the next-to-leading power. We write the scattering
amplitude, depicted in Fig. 2, as

iAf /
Z

dxd2k?H(x, ⇠, q?, k?,�?) xf
g(x, ⇠, k?,�?) , (4)

where q? is the jet transverse momentum defined above, and k? is the gluon transverse
momentum entering the hard partonic part of Fig. 2. In this calculation, q? is the same
order of Q, while the nucleon recoil momentum �? is much smaller than Q. In the twist
analysis, we expand the scattering amplitude in terms of k?/q? (or k?/Q),

H(x, ⇠, q?, k?,�?) = H(0)(x, ⇠, q?, 0,�?) + k↵
?

@

@k↵
?
H(x, ⇠, q?, 0,�?) + · · · . (5)

For the spin-average cross section, we take the zero-th order expansion of k?. As a result,
k? is integrated out for the gluon Wigner distribution,

Z
d2k?xf

g(x, ⇠, k?,�?) = Fg(x, ⇠,�?) , (6)

where Fg is the spin-average gluon GPD. The scattering amplitude can be written as

iA(0)
f /

Z
dxH(0)(x, ⇠, q?, 0, 0) xFg(x, ⇠,�?) . (7)
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FIG. 2. Generic Feynman diagram to evaluate the single longitudinal spin asymmetry in the hard
exclusive dijet production in deep inelastic lepton nucleon scattering processes. All possible gluon
attachment has been included in our calculations.

Q2/(2q · p), y = q · p/(l · p). The quark and antiquark momenta are further parameterized
by their longitudinal momentum fractions z and z̄ = 1�z as well as their transverse momenta
q? ��?/2 and �q? ��?/2. In addition, for the exclusive processes, we have the following
kinematics: � = p0 � p, P = (p+ p0)/2, t = �2, (q+ p)2 = W 2, (q��)2 = (q1 + q2)2 = M2,
and the skewness parameter is defined as ⇠ = (p+ � p0+)/(p+ + p0+) with p± = (p0±pz)/

p
2,

where q and p are chosen to be along the z axis. As shown in Fig. 1, the lepton plane is set
as the x� z plane. The quark pair are in one plane with azimuthal angle �q respect to the
lepton plane, whereas the recoiled proton is in another plane with momentum transfer ~�?
and azimuthal angle ��. The spin-average cross section for this process has been calculated
in Ref. [20]. In the following, we will compute the single longitudinal target-spin asymmetry.
We will show how this asymmetry can be related to the gluon OAM contributions.

Generically, the single longitudinal spin asymmetry in the above process can be evaluated
following the usual collinear expansion at the next-to-leading power. We write the scattering
amplitude, depicted in Fig. 2, as
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where q? is the jet transverse momentum defined above, and k? is the gluon transverse
momentum entering the hard partonic part of Fig. 2. In this calculation, q? is the same
order of Q, while the nucleon recoil momentum �? is much smaller than Q. In the twist
analysis, we expand the scattering amplitude in terms of k?/q? (or k?/Q),
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where q and p are chosen to be along the z axis. As shown in Fig. 1, the lepton plane is set
as the x� z plane. The quark pair are in one plane with azimuthal angle �q respect to the
lepton plane, whereas the recoiled proton is in another plane with momentum transfer ~�?
and azimuthal angle ��. The spin-average cross section for this process has been calculated
in Ref. [20]. In the following, we will compute the single longitudinal target-spin asymmetry.
We will show how this asymmetry can be related to the gluon OAM contributions.
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following the usual collinear expansion at the next-to-leading power. We write the scattering
amplitude, depicted in Fig. 2, as
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dxd2k?H(x, ⇠, q?, k?,�?) xf
g(x, ⇠, k?,�?) , (4)

where q? is the jet transverse momentum defined above, and k? is the gluon transverse
momentum entering the hard partonic part of Fig. 2. In this calculation, q? is the same
order of Q, while the nucleon recoil momentum �? is much smaller than Q. In the twist
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For the spin-average cross section, we take the zero-th order expansion of k?. As a result,
k? is integrated out for the gluon Wigner distribution,
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g(x, ⇠, k?,�?) = Fg(x, ⇠,�?) , (6)

where Fg is the spin-average gluon GPD. The scattering amplitude can be written as
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Because �? ⌧ q?, we have also taken �? = 0 in the hard partonic part. This will enter
into the spin-average cross section contribution, e.g., Eq. (9) below.

On the other hand, the single longitudinal target-spin asymmetry comes from the next-
to-leading power expansion of Eq. (5). Because of the nontrivial correlation between k? and
�? in the gluon Wigner distribution due to the gluon orbital motion, this contribution will
lead to a novel correlation between q? and �? as mentioned in Introduction,

Z
d2k?(~q? · ~k?)xf g(x, ⇠, k?,�?) = �iS+(~q? ⇥ ~�?)xLg(x, ⇠,�?) + · · · , (8)

where we have only kept the spin-dependent matrix element in the above equation and S+

represents the longitudinal spin, and we have taken the leading contribution in terms of
(~q? · ~k?) in H. We refer the above Lg(x, ⇠,�?) as the gluon OAM distribution, from which
we shall be able to obtain the gluon OAM contribution to the proton spin from Eq. (1).
According to this result, we only need to measure how the single target-spin asymmetry
modulates with sin(�q � ��)— which comes from (~q? ⇥ ~�?)—to extract the gluon OAM
density.

The detailed derivations will be presented in a separate publication. Here, we present
the main results and demonstrate the sensitivity of the spin asymmetries on the gluon OAM
distribution. For the spin-average cross section, we have the following expression [20],
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where µ2 = zz̄Q2, and we have only kept the azimuthal angular symmetric terms in the above
result and �q� = �q � ��. The contributions from the transverse and longitudinal photons

are: |AL|2 = 4�
��Fg + 4⇠2�̄F 0

g

��2, |AT |2 = �̄ (1/(zz̄)� 2)
��Fg + 2⇠2(1� 2�)F 0

g

��2, where � =
µ2/(µ2 + ~q2?). We have defined the following generalized Compton form factors,

Fg(⇠, t) =

Z
dx

1

(x+ ⇠ � i")(x� ⇠ + i")
Fg(x, ⇠, t) ,

F 0
g(⇠, t) =

Z
dx

1

(x+ ⇠ � i")2(x� ⇠ + i")2
Fg(x, ⇠, t) . (11)

Following the above procedure, we derive the longitudinal target-spin dependent di↵erential
cross section,
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where �� = (�(S+) � �(�S+))/2 and �p represents the longitudinal polarization for the
incoming nucleon. The spin-dependence comes from the interferences between the leading-
twist and and twist-three amplitudes,
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Because �? ⌧ q?, we have also taken �? = 0 in the hard partonic part. This will enter
into the spin-average cross section contribution, e.g., Eq. (9) below.

On the other hand, the single longitudinal target-spin asymmetry comes from the next-
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Because �? ⌧ q?, we have also taken �? = 0 in the hard partonic part. This will enter
into the spin-average cross section contribution, e.g., Eq. (9) below.

On the other hand, the single longitudinal target-spin asymmetry comes from the next-
to-leading power expansion of Eq. (5). Because of the nontrivial correlation between k? and
�? in the gluon Wigner distribution due to the gluon orbital motion, this contribution will
lead to a novel correlation between q? and �? as mentioned in Introduction,
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where we have only kept the spin-dependent matrix element in the above equation and S+

represents the longitudinal spin, and we have taken the leading contribution in terms of
(~q? · ~k?) in H. We refer the above Lg(x, ⇠,�?) as the gluon OAM distribution, from which
we shall be able to obtain the gluon OAM contribution to the proton spin from Eq. (1).
According to this result, we only need to measure how the single target-spin asymmetry
modulates with sin(�q � ��)— which comes from (~q? ⇥ ~�?)—to extract the gluon OAM
density.

The detailed derivations will be presented in a separate publication. Here, we present
the main results and demonstrate the sensitivity of the spin asymmetries on the gluon OAM
distribution. For the spin-average cross section, we have the following expression [20],
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Because �? ⌧ q?, we have also taken �? = 0 in the hard partonic part. This will enter
into the spin-average cross section contribution, e.g., Eq. (9) below.

On the other hand, the single longitudinal target-spin asymmetry comes from the next-
to-leading power expansion of Eq. (5). Because of the nontrivial correlation between k? and
�? in the gluon Wigner distribution due to the gluon orbital motion, this contribution will
lead to a novel correlation between q? and �? as mentioned in Introduction,
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where we have only kept the spin-dependent matrix element in the above equation and S+

represents the longitudinal spin, and we have taken the leading contribution in terms of
(~q? · ~k?) in H. We refer the above Lg(x, ⇠,�?) as the gluon OAM distribution, from which
we shall be able to obtain the gluon OAM contribution to the proton spin from Eq. (1).
According to this result, we only need to measure how the single target-spin asymmetry
modulates with sin(�q � ��)— which comes from (~q? ⇥ ~�?)—to extract the gluon OAM
density.

The detailed derivations will be presented in a separate publication. Here, we present
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cross section,
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where, again, we have defined the following Compton form factors to simplify the final
results,
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(x+ ⇠ � i")3(x� ⇠ + i")3
xLg(x, ⇠, t) . (14)

The above equations are the main results of our paper. Clearly, because of the pre-factor of
Eq. (12), we find that the spin asymmetry is a power correction, which is consistent with
our analysis. In addition, it is proportional to (~q? ⇥ ~�?), so that it has the characteristic
azimuthal angular correlation sin(�q � ��).

In order to observe the above spin asymmetry, we need to distinguish the two final state
jets. This can be achieved by identifying the charge of the leading hadron in the jet, or
by measuring the heavy quark pair through their decay products. For the latter process,
we have to consider the mass e↵ects, which can be straightforwardly taken into account.
Similar calculations can be performed for the quark channel contributions, which may play
important roles in the large-x region. We will leave that for a future publication.

III. DISCUSSION AND SUMMARY

As shown above, the gluon OAM contribution to the single longitudinal target-spin asym-
metry has the novel azimuthal angular correlation of sin(�q ���). Experimentally, we have
to identify the azimuthal angles of both ~q? and ~�?. In particular, it is challenging to
precisely measure �?, because majority of the events will have small momentum transfer.
Fortunately, the current design for the EIC detector will have excellent coverage to study
the �? distribution in the hard di↵ractive processes, including the proposed measurement
of this paper, especially with the Roman Pot device along the beam line of the EIC. With
the measurements of these two azimuthal angels, we can form the spin asymmetry,

Asin(�q���) =

Z
d�qd��

d�" � d�#

d�qd��
sin(�q � ��)

�Z
d�qd��

d�" + d�#

d�qd��
. (15)

From the results in the last section, we know that the above asymmetry will be sensitive to
the gluon OAM distribution, and has the following kinematic dependence, schematically,

Asin(�q���) / (z̄ � z)|~q?||~�?|
~q2? + µ2

, (16)

where again, it is a twist-three e↵ect. The size of the asymmetry, of course, will depend on
how large the gluon OAM is. Therefore, the experimental measurement of this asymmetry
will provide direct access to the gluon OAM distribution. The unique angular correlation
between the jet transverse momentum and the nucleon’s recoiled momentum will help to
identify the above asymmetry. We would like to emphasize that even if the asymmetry
turns out small, it shall provide a strong constraint on the gluon OAM distribution. We are
planing to have model predictions for the typical kinematics at the EIC, and hope this will
lead to the first measurement of gluon OAM in the future.
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Measurement at EIC 

§ Key measurements: 
Dijet momenta 
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§ Kinematics: 
§  Large Bjorken x, high Q2; 
§ Nucleon deflection angle 

(determines t and ξ). 
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scattering angle resolution for the scattered
lepton deteriorates. This problem is ad-
dressed by reconstructing the lepton kine-
matics from the hadronic final state using
the Jacquet-Blondel method [265, 266]. At
HERA, this method was successfully used
down to y of 0.005. The main reason this
hadronic method renders better resolution
at low y follows from the equation y

JB

=
E � P had

z

/2E
e

, where E � P had

z

is the sum
over the energy minus the longitudinal mo-
mentum of all hadronic final-state particles
and E

e

is the electron beam energy. This
quantity has no degradation of resolution for
y < 0.1 as compared to the electron method,
where y

e

= 1� (1� cos✓
e

)E0
e

/2E
e

.
Typically, one can obtain for a given

center-of-mass energy squared, roughly a
decade of Q2 reach at fixed x when using
only an electron method to determine lepton

kinematics, and roughly two decades when
including the hadronic method. If only us-
ing the electron method, one can increase the
range in accessible Q2 by lowering the center-
of-mass energy, as can be seen from compar-
ing the two panels of Fig. 6.1. This may be-
come relevant for some semi-inclusive and ex-
clusive processes. The coverage of each set-
ting is given by the product of y ⇥ s. With
a low y

min

cut, one thus needs fewer settings
in s. However, this is an important consid-
eration for any measurement, which needs to
separate the cross-section components due to
longitudinal and transverse photon polariza-
tion, i.e. the measurement of F

L

where one
needs to have full y-coverage at all energies.
The advantages and disadvantages of this
solution are discussed in the two machine-
specific detector sections of this chapter.
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Figure 6.1: The x � Q2 plane for center-of-mass energy 45 GeV (left) and 140 GeV (right).
The black lines indicate di↵erent y-cuts placed on the scattered lepton kinematics.

6.2.2 Angle and Momentum Distributions

Figure 6.2 shows the momentum versus
rapidity distributions in the laboratory frame
for pions originating from semi-inclusive re-
actions for di↵erent lepton and proton beam
energy combinations. For lower lepton en-
ergies, pions are scattered more in the for-
ward (ion) direction. With increasing lep-
ton beam energy, the hadrons increasingly
populate the central region of the detector.

At the highest lepton energies, hadrons are
even largely produced going backward (i.e.
in the lepton beam direction). The kine-
matic distributions for kaons and additional
protons/anti-protons are essentially identical
to those of the pions. The distributions for
semi-inclusive events in electron-nucleus col-
lisions may be slightly altered due to nuclear
modification e↵ects, but the global features

125



Measurement at EIC 

§ Key measurements: 
Dijet momenta 
Final state nucleon momentum 
 

§ Kinematics: 
§  Large Bjorken x, high Q2; 
§ Nucleon deflection angle 

(determines t and ξ). 

20 

proton momentum (GeV/c)

0 50 100 150 200 250

p
ro

to
n

 s
ca

tt
e

ri
n

g
 a

n
g

le
 (

m
ra

d
)

0

5

10

15

20

25

30

1

10

210

310

5 GeV on 50 GeV

5 GeV on 100 GeV

5 GeV on 250 GeV

Figure 6.5: The scattered proton momentum vs. scattering angle in the laboratory frames for
DVCS events with di↵erent beam energy combinations. The following cuts have been applied:
1 GeV2 < Q2 < 100 GeV2, 0.00001 < x < 0.7 and 0 < t < 2 GeV2. The angle of the recoiling
hadronic system is directly and inversely correlated with the proton energy. It thus decreases
with increasing proton energy.

sion of ⇠ 0.2%. The luminosity measurement
was typically carried out by detecting the
final state photons; the final state electron
was also measured in some cases for exper-
imental cross checks. Limitations in deter-
mining the geometric acceptance of the very-
forward photons resulted in a systematic un-
certainty of 1-2% on the HERA luminosity
measurements. For a polarized e+p collider,
the bremsstrahlung cross-section has a de-
pendence on the beam polarizations, which

may be expressed as � = �
0

(1 + aP
e

P
p

).
Preliminary estimates indicate that the co-
e�cient a is small, but detailed studies are
currently underway to understand the size
of a relative to the magnitude of the dou-
ble spin asymmetries A

LL

at small x
B

. The
theoretical uncertainty on a, and the exper-
imental uncertainties on the measured beam
polarizations P

e

and P
p

, will limit the preci-
sion of the absolute and relative luminosity
measurements.

6.2.5 Hadron and Lepton Polarimetry

Compton back-scattering is the estab-
lished method to measure lepton beam po-
larization in e+p colliders. At HERA, there
were two Compton back-scattering polarime-
ters [267]: one measuring the transverse po-
larization (TPOL) of the beam through a po-
sition asymmetry and one measuring the lon-
gitudinal polarization (LPOL) of the beam

through an energy asymmetry in Compton
back-scattered photons. The TPOL and
LPOL systematic uncertainties of RUN-I
were 3.5% and 1.6% and of Run-II 1.9% and
2.0%, respectively. In spite of the expected
high luminosity at the EIC, these system-
atic uncertainties could be reduced to ⇠1%
if special care is taken to reduce the impact
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Ep =50GeV,				θ =10mrad

ξ~1− cosθ3+ cosθ ~0.0000125,		t~0.25GeV
2.

A. Accardi et al., arXiv: 1212.1701 



Outlook 

§  Include genuinely twist-three diagrams (undergoing); 

§ One-loop radiative corrections, test validity of collinear 
factorization; 

§ Monte Carlo simulations. 

 
After all, the leading contribution to the single target-
spin asymmetry is strongly sensitive to the gluon OAM! 
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FIG. 3: Three-gluon correlation diagrams needed for a gauge-invariant analysis to twist-3 accuracy.

where k̃i? = ✏ij?k
j

?, and

gµ⌫? = gµ⌫ � nµ

+n
⌫

� � n⌫

+n
µ

� . (26)

h? and h1? reduce to the linearly polarized gluon transverse momentum distributions for an unpolarized and polarized
hadron [17]. �g corresponds to the polarized gluon distribution.

For µ = i, ⌫ = �, there are two independent distributions with respect to the index i,

�i�(x, ⇠, k?,�?) = xP+

"
ki?
M

g3(x, ⇠, k?,�?) +
k̃i?
M

S+�g3(x, ⇠, k?,�?)

#
. (27)

Since �i� contains non-dynamical gluons, it can be re-expressed as multi-particle correlations according to the equa-
tions of motion. Therefore, �i� is a genuinely twist-3 distribution that contributes at order ⇤QCD/Q.

For µ = ⌫ = �, there is only one independent genuinely twist-4 distribution that contributes at order ⇤2
QCD/Q

2.
It should be noted that for a complete gauge-invariant analysis, we should also include Feynman diagrams that

involve three-gluon distributions like Fig. 3. These three-gluon distributions are also genuinely twist-3, and they are
beyond the scope of this work along with �i�.

Now let us examine the contributions from the four distributions in �ij one by one.

A. f(x, ⇠, k?,�?)

According to the above discussion, the contribution from (x, ⇠, k?,�?) to the scattering amplitude is

iA
f

⇡
Z

dxd2k?
1

(x+ ⇠ � i")(x� ⇠ + i")

✓
� �ab

2(N2
c

� 1)
gµ⌫? Hab

µ⌫

(x, k?)

◆
xfg(x, k?,�?) . (28)

If we sum over the spins of the quarks in the cross section, only the parity-even contributions from the hard part
will remain. Therefore, the hard part will be a functional of ~q2?, ~q? · ~k?, and ~q? · ~�?. Among them, only ~q? · ~k?
makes a nonzero contribution to the cross section when convoluted with the GTMD that corresponds to the gluon
OAM:

Z
d2k? ~q? · ~k?i

~k? ⇥ ~�?
M2

S+F l(x, ⇠, k?,�?) = iS+(~q? ⇥ ~�?)

Z
d2k?

k2?
2M2

F l(x, ⇠, k?,�?)

= �iS+(~q? ⇥ ~�?)Lg

(x, ⇠, t) . (29)

Since GPDs usually have a slow dependence on ⇠, we can approximately have L
g

(x, 0, t) ⇡ L
g

(x, ⇠, t). For the
kinematics in Sec. II, ⇠ 6= 0, but we can neglect the dependence over ⇠ and extrapolate L

g

(x, ⇠, t) to t ! 0 to obtain
the gluon OAM density L

g

(x).

According to this result, we only need to measure how the single target-spin asymmetry modulates with sin ✓(~q?, ~�?)—
which comes from (~q? ⇥ ~�?)—to extract out the gluon OAM density. This means that we can neglect ~q? · ~�? in
the hard part, because it leads to a modulation of cos ✓(~q?, ~�?). Therefore, we can simply ignore �? in the twist-3
expansion of the hard part, which makes the calculation much simpler.



Summary 

§ Gluon OAM in the Jaffe-Manohar sum rule can be 
measured through the Wigner distribution; 

§ The leading contribution to the single longitudinal 
target-spin asymmetry in exclusive dijet production from 
ep scattering is strongly sensitive to the gluon OAM. 

§ Differential cross section formula has been derived for 
the experimental observable at leading order. 
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